Learn R Programming

CNVPanelizer (version 1.2.2)

PlotBootstrapDistributions: PlotBootstrapDistributions

Description

Plots the generated bootstrap distribution as violin plots. Genes showing significant values are marked in a different color.

Usage

PlotBootstrapDistributions(bootList, reportTables, outputFolder = getwd(), sampleNames = NULL, save = FALSE, scale = 7)

Arguments

bootList
List of bootstrapped read counts for each sample data
reportTables
List of report tables for each sample data
outputFolder
Path to the folder where the data plots will be created
sampleNames
List with sample names
save
Boolean to save the plots to the output folder
scale
Numeric scale factor

Value

A list with ggplot2 objects.

Examples

Run this code

data(sampleReadCounts)
data(referenceReadCounts)
## Gene names should be same size as row columns
geneNames <- row.names(referenceReadCounts)

ampliconNames <- NULL

normalizedReadCounts <- CombinedNormalizedCounts(sampleReadCounts,
                                                 referenceReadCounts,
                                                 ampliconNames = ampliconNames)

# After normalization data sets need to be splitted again to perform bootstrap
samplesNormalizedReadCounts = normalizedReadCounts["samples"][[1]]
referenceNormalizedReadCounts = normalizedReadCounts["reference"][[1]]

# Should be used values above 10000
replicates <- 10

# Perform the bootstrap based analysis
bootList <- BootList(geneNames,
                     samplesNormalizedReadCounts,
                     referenceNormalizedReadCounts,
                     replicates = replicates)

backgroundNoise <- Background(geneNames,
           samplesNormalizedReadCounts,
           referenceNormalizedReadCounts,
           bootList,
           replicates = replicates)

reportTables <- ReportTables(geneNames,
             samplesNormalizedReadCounts,
             referenceNormalizedReadCounts,
             bootList,
             backgroundNoise)

PlotBootstrapDistributions(bootList, reportTables, save = FALSE)

Run the code above in your browser using DataLab