Learn R Programming

CNVrd2 (version 1.10.2)

emnormalCNV: Implement the EM algorithm

Description

This function is used to obtain the maximization likelihood estimation of normal mixture model by using the EM algorithm (Demster et al., 1977).

Usage

emnormalCNV(Object, ...)

Arguments

Object
An object of class clusteringCNVs.
...
Optional arguments

Value

loglk
Value of the likelihood function.
p
Proportions of groups.
m
Means of groups.
sigma
Standard deviations of groups.
count
A number of iteration to obtain convergence stage.
bic
See searchGroupCNVs.
z
Data frame of proportions of data in mixture components.

References

Dempster, A. P., Laird, N. M., Rubin, D. B., 1977. Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 1-38.

See Also

searchGroupCNVs, groupCNVs

Examples

Run this code
data(fcgr3bMXL)

sS <- resultSegment$segmentationScores
#########Histogram###########################
###View segmentation scores##################
hist(sS[, 1], 100)
############################################
##Number of components#######################
###Make an object of clusteringCNVs class######
objectCluster <- new("clusteringCNVs",
                     x = sS[, 1], k = 4, EV = TRUE)

set.seed(123)
copynumberGroups <- groupCNVs(Object = objectCluster)

Run the code above in your browser using DataLab