This function imputes the target data set dset
in each coin using the imputation function f_i
. This is performed
in the same way as the coin method Impute.coin()
, but with one "special case" for panel data. If f_i = "impute_panel
,
the data sets inside the purse are imputed using the impute_panel()
function. In this case, coins are not imputed individually, but treated as a single data set. In this
case, optionally set the imputation method as f_i_para = list(imp_type = .)
and f_i_para = list(max_time = .)
where .
should be substituted with the maximum
number of time points to search backwards for a non-NA
value. See impute_panel()
for more details.
No further arguments need to be passed to impute_panel()
. See vignette("imputation")
for more
details. See also Impute.coin()
documentation.
# S3 method for purse
Impute(
x,
dset,
f_i = NULL,
f_i_para = NULL,
impute_by = "column",
group_level = NULL,
use_group = NULL,
normalise_first = NULL,
write_to = NULL,
warn_on_NAs = TRUE,
...
)
An updated purse with imputed data sets added to each coin.
A purse object
The name of the data set to apply the function to, which should be accessible in .$Data
.
An imputation function. For the "purse" class, if f_i = "impute_panel
this is a special
case: see details.
Further arguments to pass to f_i
, other than x
. See details.
Specifies how to impute: if "column"
, passes each column (indicator) separately as a numerical
vector to f_i
; if "row"
, passes each row separately; and if "df"
passes the entire data set (data frame) to
f_i
. The function called by f_i
should be compatible with the type of data passed to it.
A level of the framework to use for grouping indicators. This is only
relevant if impute_by = "row"
or "df"
. In that case, indicators will be split into their groups at the
level specified by group_level
, and imputation will be performed across rows of the group, rather
than the whole data set. This can make more sense because indicators within a group are likely to be
more similar.
Optional grouping variable name to pass to imputation function if this supports group imputation.
Logical: if TRUE
, each column is normalised using a min-max operation before
imputation. By default this is FALSE
unless impute_by = "row"
. See details.
Optional character string for naming the resulting data set in each coin. Data will be written to
.$Data[[write_to]]
. Default is write_to == "Imputed"
.
Logical: if TRUE
will issue a warning if there are any NA
s detected in the data frame
after imputation has been applied. Set FALSE
to suppress these warnings.
arguments passed to or from other methods.