Objective function of the form: \( Q_\beta = \sum_{i = 1}^N \Bigl[ \sum_{j = 0}^1 w_{ij} \text{log} \{ \pi_{ij} \}\Bigr]\). Used to obtain estimates of \(\beta\) parameters.
q_beta_f(beta, X, w_mat, sample_size, n_cat)
q_beta_f
returns the negative value of the expected log-likelihood function,
\( Q_\beta = \sum_{i = 1}^N \Bigl[ \sum_{j = 1}^2 w_{ij} \text{log} \{ \pi_{ij} \}\Bigr]\),
at the provided inputs.
A numeric vector of regression parameters for the
Y
(true outcome) ~ X
(predictor matrix of interest).
A numeric design matrix.
Matrix of E-step weights obtained from w_j
.
An integer value specifying the number of observations in the sample.
This value should be equal to the number of rows of the design matrix, X
.
The number of categorical values that the true outcome, Y
,
can take.