Objective function of the form: \(Q_{\gamma} = \sum_{i = 1}^N \Bigl[\sum_{j = 1}^2 \sum_{k = 1}^2 w_{ij} y^*_{ik} \text{log} \{ \pi^*_{ikj} \}\Bigr]\). Used to obtain estimates of \(\gamma\) parameters.
q_gamma_f(gamma_v, Z, obs_Y_matrix, w_mat, sample_size, n_cat)
q_beta_f
returns the negative value of the expected log-likelihood function,
\(Q_{\gamma} = \sum_{i = 1}^N \Bigl[\sum_{j = 1}^2 \sum_{k = 1}^2 w_{ij} y^*_{ik} \text{log} \{ \pi^*_{ikj} \}\Bigr]\),
at the provided inputs.
A numeric vector of regression parameters for the observed
outcome mechanism, Y* | Y
(observed outcome, given the true outcome) ~ Z
(misclassification
predictor matrix). In matrix form, the gamma parameter matrix rows
correspond to parameters for the Y* = 0
observed outcome, with the dimensions of Z
.
In matrix form, the gamma parameter matrix columns correspond to the true outcome categories
\(j = 1, \dots,\) n_cat
. The numeric vector gamma_v
is
obtained by concatenating the gamma matrix, i.e. gamma_v <- c(gamma_matrix)
.
A numeric design matrix.
A numeric matrix of indicator variables (0, 1) for the observed
outcome Y*
. Rows of the matrix correspond to each subject. Columns of
the matrix correspond to each observed outcome category. Each row should contain
exactly one 0 entry and exactly one 1 entry.
Matrix of E-step weights obtained from w_j
.
An integer value specifying the number of observations in the sample.
This value should be equal to the number of rows of the design matrix, Z
.
The number of categorical values that the true outcome, Y
,
and the observed outcome, Y*
can take.