This function estimates the coefficients of a linear regression model using a design matrix `X` and a response vector `Y`. It implements an A-optimal and D-optimal design criteria to choose optimal subsets of observations.
LICbeta(X, Y, alpha, K, nk)
A list containing:
The LIC estimator for linear regression.
The observation matrix (n x p)
The response vector (n x 1)
The significance level for computing confidence intervals
The number of subsets
The number of observations per subset
Guo, G., Song, H. & Zhu, L. The COR criterion for optimal subset selection in distributed estimation. Statistics and Computing, 34, 163 (2024). tools:::Rd_expr_doi("10.1007/s11222-024-10471-z")