Learn R Programming

COSINE (version 1.0)

Score_adjust_PPI: To adjust the score of the selected PPI sub-network using random sampling

Description

Randomly sample a large number of node-sets and edge-sets from the background PPI network to derive the null distribution of the scores for subnetworks with certain size, and to compute the adjusted scores for the selected sub-network

Usage

Score_adjust_PPI(scaled_node_score, scaled_edge_score, 
PPI, lam, subnet, num_random_sampling, best_score)

Arguments

scaled_node_score
The scaled F-statistics of each node(gene) in the network
scaled_edge_score
The scaled ECF-statistics of each edge in the network
PPI
A matrix with two columns containing the interacting gene pairs
lam
The weight parameter lambda used for the selection of this sub-network
subnet
A vector of the index of selected genes
num_random_sampling
Number of random subnetworks to be sampled
best_score
The original score of selected sub-network

Value

  • The adjusted score of the selected sub-network

Examples

Run this code
data(scaled_node_score)
data(scaled_edge_score)
data(PPI)
data(set1_GA)
adj_Score<-Score_adjust_PPI(scaled_node_score,scaled_edge_score,
PPI,lam=0.1,subnet=set1_GA$Subnet[[1]],num_random_sampling=2,
best_score=set1_GA$Best_Scores[1])

Run the code above in your browser using DataLab