Rdocumentation
powered by
Learn R Programming
COUNT (version 1.3.5)
Functions, Data and Code for Count Data
Description
Functions, data and code for Hilbe, J.M. 2011. Negative Binomial Regression, 2nd Edition (Cambridge University Press) and Hilbe, J.M. 2014. Modeling Count Data (Cambridge University Press).
Copy Link
Link to current version
Version
Version
1.3.5
1.3.4
1.3.2
1.3.1
1.3.0
1.2.3
1.2.1
1.2.0
1.1.2
1.1.1
1.1.0
1.0.0
Install
install.packages('COUNT')
Monthly Downloads
968
Version
1.3.5
License
GPL-2
Maintainer
Andrew Robinson Joseph M Hilbe hilbeasuedu
Last Published
April 28th, 2025
Functions in COUNT (1.3.5)
Search all functions
logit_syn
Logistic regression : generic synthetic binary/binomial logistic data and model
medpar
medpar
ml.nb2
NB2: maximum likelihood linear negative binomial regression
rwm
rwm
myTable
Frequency table
modelfit
Fit Statistics for generalized linear models
ml.nb1
NB1: maximum likelihood linear negative binomial regression
ml.nbc
NBC: maximum likelihood linear negative binomial regression
nb2.obs.pred
Table of negative binomial counts: observed vs predicted proportions and difference
nb1_syn
Negative binomial (NB1): generic synthetic linear negative binomial data and model
rwm1984
rwm1984
nb2_syn
Negative binomial (NB2): generic synthetic negative binomial data and model
nbc_syn
Negative binomial (NB-C): generic synthetic canonical negative binomial data and model
nuts
nuts
rwm5yr
rwm5yr
ships
ships
poisson_syn
Poisson : generic synthetic Poisson data and model
poi.obs.pred
Table of Poisson counts: observed vs predicted proportions and difference
titanicgrp
titanicgrp
titanic
titanic
smoking
smoking
probit_syn
Probit regression : generic synthetic binary/binomial probit data and model
affairs
affairs
lbwgrp
lbwgrp
azcabgptca
azcabgptca
lbw
lbw
azdrg112
azdrg112
azpro
azpro
fishing
fishing
fasttrakg
fasttrakg
badhealth
badhealth
azprocedure
azprocedure
loomis
loomis
ml.pois
NB2: maximum likelihood Poisson regression
mdvis
mdvis