powered by
Culster interval data with okm algorithm.
iokm(x, centers, nstart = 10, distance = "euclid", algorithm = "std", update = "mean", trace = FALSE, iter.max = 20, secure = FALSE)
An 3D interval array.
A number or interval, number of cluster for clustering or pre init centers.
A number, number of execution to find the best result.
A string ('euclid': Euclidian distance, 'hausdorff': Hausdorff distance).
A string ('std': Standard algorithm, 'matrix': Matrix algorithm).
A string ('mean': Mean center, 'sum': Sum center, 'join': Union center, 'meet': Intersect center).
A boolean, tracing information on the progress of the algorithm is produced.
the maximum number of iterations allowed.
A boolean (secure interval or not : min <= max).
# NOT RUN { iokm(iaggregate(iris, col=5), 2) iokm(iaggregate(iris, col=5), iaggregate(iris, col=5)) # }
Run the code above in your browser using DataLab