Learn R Programming

CRF (version 0.3-8)

infer.conditional: Conditional inference method

Description

Computing the partition function and marginal probabilities

Usage

infer.conditional(crf, clamped, infer.method, ...)

Arguments

crf
The CRF
clamped
The vector of fixed values for clamped nodes, 0 for unfixed nodes
infer.method
The inference method to solve the clamped CRF
...
The parameters for infer.method

Value

  • This function will return a list with components:
  • node.belNode belief. It is a matrix with crf$n.nodes rows and crf$max.state columns.
  • edge.belEdge belief. It is a list of matrices. The size of list is crf$n.edges and the matrix i has crf$n.states[crf$edges[i,1]] rows and crf$n.states[crf$edges[i,2]] columns.
  • logZThe logarithmic value of CRF normalization factor Z.

Details

Conditional inference (takes another inference method as input)

Examples

Run this code
library(CRF)
data(Small)
i <- infer.conditional(Small$crf, c(0,1,0,0), infer.exact)

Run the code above in your browser using DataLab