Learn R Programming

CRTConjoint

The goal of CRTConjoint is to use the conditional randomization test (CRT) to test for various hypothesis in conjoint experiments. In particular, CRT_pval aims to test whether a factor matters in any way. For example, does education matter in immigration preferences given other attributes of the candidate.

Installation

You can install CRTConjoint from GitHub with:

# install.packages("devtools")
devtools::install_github("daewoongham97/CRTConjoint")

or directly from CRAN with:

install.packages("CRTConjoint")

Example

This is a basic example which shows you how to test whether education matters for immigration preferences.

library(CRTConjoint)

# Immigration data
data("immigrationdata")
form = formula("Y ~ FeatEd + FeatGender + FeatCountry + FeatReason + FeatJob +
FeatExp + FeatPlans + FeatTrips + FeatLang + ppage + ppeducat + ppethm + ppgender")
left = colnames(immigrationdata)[1:9]
right = colnames(immigrationdata)[10:18]

## Not run: 
# Testing whether edcuation matters for immigration preferences
education_test = CRT_pval(formula = form, data = immigrationdata, X = "FeatEd",
 left = left, right = right, non_factor = "ppage", B = 100, analysis = 2)
education_test$p_val

Copy Link

Version

Install

install.packages('CRTConjoint')

Monthly Downloads

207

Version

0.1.0

License

GPL (>= 3)

Issues

Pull Requests

Stars

Forks

Maintainer

Dae Woong Ham

Last Published

June 9th, 2022

Functions in CRTConjoint (0.1.0)

immigrationdata

Immigration Choice Conjoint Experiment Data from Hainmueller et. al. (2014).
CRT_pval

Testing whether factor X matters in Conjoint Experiments
CRT_carryovereffect

Testing carryover effect in Conjoint Experiments
CRT_profileordereffect

Testing profile order effect in Conjoint Experiments
CRT_fatigueeffect

Testing fatigue effect in Conjoint Experiments
CRTConjoint-package

CRTConjoint: Conditional Randomization Testing (CRT) Approach for Conjoint Analysis