##load data
library(rpart)
data(BFP)
##generate random order vector
BFP_r<-BFP[sample(nrow(BFP),nrow(BFP)),]
size<-nrow(BFP_r)
##size<-300
train<-BFP_r[1:floor(size/3),]
val<-BFP_r[ceiling(size/3):floor(2*size/3),]
test<-BFP_r[ceiling(2*size/3):size,]
##train CART decision tree model
model=rpart(as.formula(Class~.),train,method="class")
##generate predictions for the tes set
preds<-predict(model,newdata=test)[,2]
##calculate brier curve
bc<-brierCurve(test[,"Class"],preds)
##plot briercurve
plotBrierCurve(bc,curveType="cost")
Run the code above in your browser using DataLab