Learn R Programming

CUB (version 0.1)

cubforsim: Simulation routine for CUB models without covariates

Description

Fit CUB models without covariates to given ordinal data. It is useful for simulation experiments since it performs the same steps as CUB function of the package, but with no printed output.

Usage

cubforsim(m, ordinal, maxiter = 500, toler = 1e-06)

Arguments

m
Number of ordinal categories
ordinal
Vector of ordinal responses
maxiter
Maximum number of iterations allowed for running the optimization algorithm (defaul: maxiter = 500)
toler
Fixed error tolerance for final estimates (default: toler = 1e-6)

Value

An object of the class "CUB", with null output for $BIC since the routine is only for simulation purposes

See Also

CUB, loglikCUB

Examples

Run this code
data(relgoods)
m<-10
ordinal<-na.omit(relgoods[,37])
simul<-cubforsim(m,ordinal,maxiter=500,toler=1e-6)
simul$estimates      # Estimated parameters vector (pai,csi)
###############
data(univer)
m<-7
ordinal<-univer[,12]
simul<-cubforsim(m,ordinal)
param<-simul$estimates   # Estimated parameters vector (pai,csi)
###############
m<-9; n<-500
pai<-0.7
csi<-0.4
ordinal<-simcub(n,m,pai,csi)
simul<-cubforsim(m,ordinal)
param<-simul$estimates
maxlik<-simul$loglik
niter<-simul$niter
varmat<-simul$varmat 

Run the code above in your browser using DataLab