data(univer)
m<-7
### CUB model with no covariate
ordinal<-univer[,12]
pai<-0.87; csi<-0.17
param<-c(pai,csi)
varmat<-varmatCUB(ordinal,m,param)
#######################
### and With covariates for feeling
data(univer)
m<-7
ordinal<-univer[,9]
pai<-0.86; gama<-c(-1.94, -0.17)
param<-c(pai,gama)
W<-univer[,4]
varmat<-varmatCUB(ordinal,m,param, W=W)
#######################
### CUB model with uncertainty covariates
data(relgoods)
m<-10
ordinal<-relgoods[,29]
gender<-relgoods[,2]
data<-na.omit(cbind(ordinal,gender))
ordinal<-data[,1]
Y<-data[,2]
bet<-c(-0.811,0.93); csi<-0.202
varmat<-varmatCUB(ordinal,m,param=c(bet,csi),Y=Y)
#######################
### and with covariates for both parameters
data(relgoods)
m<-10
gender<-relgoods[,2]
smoking<-relgoods[,12]
ordinal<-relgoods[,40]
nona<-na.omit(cbind(ordinal,gender,smoking))
ordinal<-nona[,1]
gender<-nona[,2]
smoking<-nona[,3]
gama<-c(-0.55, -0.43); bet<-c(-0.45, -0.48)
varmat<-varmatCUB(ordinal,m,param=c(bet,gama),Y=gender,W=smoking)
#######################
### Variance-covariance for a CUB model with shelter
m<-8; n<-300
pai1<-0.5; pai2<-0.3; csi<-0.4
shelter<-6
pr<-probcubshe1(m,pai1,pai2,csi,shelter)
ordinal<-sample(1:m,n,prob=pr,replace=TRUE)
param<-c(pai1,pai2,csi)
varmat<-varmatCUB(ordinal,m,param,shelter=shelter)
Run the code above in your browser using DataLab