Last chance! 50% off unlimited learning
Sale ends in
Compute preliminary parameter estimates for a CUBE model with covariates for all the three parameters. These estimates are set as initial values to start the E-M algorithm within maximum likelihood estimation.
inibestcubecov(m,ordinal,Y,W,Z)
A vector (inibet, inigama, inialpha)
of preliminary estimates of parameter vectors for
inibet
, inigama
and inialpha
have length equal to NCOL(Y)+1, NCOL(W)+1 and
NCOL(Z)+1, respectively, to account for an intercept term for each component.
Number of ordinal categories
Vector of ordinal responses
Matrix of selected covariates to explain the uncertainty parameter
Matrix of selected covariates to explain the feeling parameter
Matrix of selected covariates to explain the overdispersion parameter
inibestcube
, inibestcubecsi
, inibestgama
data(relgoods)
m<-10
naord<-which(is.na(relgoods$Tv))
nacovpai<-which(is.na(relgoods$Gender))
nacovcsi<-which(is.na(relgoods$year.12))
nacovphi<-which(is.na(relgoods$EducationDegree))
na<-union(union(naord,nacovpai),union(nacovcsi,nacovphi))
ordinal<-relgoods$Tv[-na]
Y<-relgoods$Gender[-na]
W<-relgoods$year.12[-na]
Z<-relgoods$EducationDegree[-na]
ini<-inibestcubecov(m,ordinal,Y,W,Z)
p<-NCOL(Y)
q<-NCOL(W)
inibet<-ini[1:(p+1)] # Preliminary estimates for uncertainty
inigama<-ini[(p+2):(p+q+2)] # Preliminary estimates for feeling
inialpha<-ini[(p+q+3):length(ini)] # Preliminary estimates for overdispersion
Run the code above in your browser using DataLab