Conduct Gaussian process regression based on the estimated ensemble kernel matrix.
estimation(
Y,
X,
K_list = NULL,
mode = "loocv",
strategy = "stack",
beta_exp = 1,
lambda = exp(seq(-10, 5)),
...
)
(matrix, n*1) The vector of response variable.
(matrix, n*d_fix) The fixed effect matrix.
(list of matrices) A nested list of kernel term matrices. The first level corresponds to each base kernel function in kern_func_list, the second level corresponds to each kernel term specified in the formula.
(character) A character string indicating which tuning parameter criteria is to be used.
(character) A character string indicating which ensemble strategy is to be used.
(numeric/character) A numeric value specifying the parameter
when strategy = "exp" ensemble_exp
.
(numeric) A numeric string specifying the range of tuning parameter to be chosen. The lower limit of lambda must be above 0.
Additional parameters to pass to estimate_ridge.
(numeric) The selected tuning parameter based on the estimated ensemble kernel matrix.
(matrix, d_fixed*1) Fixed effect estimates.
(matrix, n*1) Kernel effect estimates.
(matrix, n*n) Estimated ensemble kernel matrix.
(vector of length K) A vector of weights of the kernels in the library.
(matrix, n*n) Estimated ensemble kernel effect matrix.
(list) The detailed estimation results of K kernels.
After obtaining the ensemble kernel matrix, we can calculate the output of Gaussian process regression.
strategy: ensemble