Learn R Programming

CVEK (version 0.1-2)

tuning_loocv: Calculating Tuning Parameters Using looCV

Description

Calculate tuning parameters based on given leave-one-out Cross Validation.

Usage

tuning_loocv(Y, X, K_mat, lambda)

Arguments

Y

(matrix, n*1) The vector of response variable.

X

(matrix, n*d_fix) The fixed effect matrix.

K_mat

(list of matrices) A nested list of kernel term matrices, corresponding to each kernel term specified in the formula for a base kernel function in kern_func_list.

lambda

(numeric) A numeric string specifying the range of tuning parameter to be chosen. The lower limit of lambda must be above 0.

Value

lambda0

(numeric) The estimated tuning parameter.

Details

leave-one-out Cross Validation

$$\lambda_{n-CV}={argmin}_{\lambda \in \Lambda}\;\Big\{log\;y^{\star T}[I-diag(A_\lambda)-\frac{1}{n}I]^{-1}(I-A_\lambda)^2[I-diag(A_\lambda)- \frac{1}{n}I]^{-1}y^\star \Big\}$$

References

Philip S. Boonstra, Bhramar Mukherjee, and Jeremy M. G. Taylor. A Small-Sample Choice of the Tuning Parameter in Ridge Regression. July 2015.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition. Springer Series in Statistics. Springer- Verlag, New York, 2 edition, 2009.

Hirotogu Akaike. Information Theory and an Extension of the Maximum Likelihood Principle. In Selected Papers of Hirotugu Akaike, Springer Series in Statistics, pages 199<U+2013>213. Springer, New York, NY, 1998.

Clifford M. Hurvich and Chih-Ling Tsai. Regression and time series model selection in small samples. June 1989.

Hurvich Clifford M., Simonoff Jeffrey S., and Tsai Chih-Ling. Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. January 2002.