Learn R Programming

CVThresh (version 1.1.0)

cvwavelet.image: Wavelet reconstruction of image by level-dependent Cross-Validation

Description

This function reconstructs image by level-dependent cross-validation wavelet shrinkage.

Usage

cvwavelet.image(images, imagewd,
    cv.optlevel, cv.bsize=c(1,1), cv.kfold, cv.tol=0.1^3, cv.maxiter=100,
    impute.tol=0.1^3, impute.maxiter=100, filter.number=2, ll=3)

Arguments

images
noisy image
imagewd
two-dimensional wavelet transform
cv.optlevel
thresholding level
cv.bsize
block size of cross-validation
cv.kfold
the number of fold of cross-validation
cv.tol
tolerance for cross-validation
cv.maxiter
maximum iteration for cross-validation
impute.tol
tolerance for imputation
impute.maxiter
maximum iteration for imputation
filter.number
specifies the smoothness of wavelet in the decomposition (argument of WaveThresh)
ll
specifies the lowest level to be thresholded

Value

  • imagecvreconstruction of image by level-dependent cross-validation wavelet shrinkage
  • cvthreshthreshold values by level-dependent cross-validation

Details

This function performs level-dependent cross-validation wavelet shrinkage for two-dimensional data.

See Also

cvtype.image, cvimpute.image.by.wavelet, cvwavelet.image.after.impute.

Examples

Run this code
# Generate Noisy Lennon Image
data(lennon)
sdimage <- sd(as.numeric(lennon))
nlennon <- ncol(lennon); nlevel <- log2(ncol(lennon))
optlevel <- c(3:(nlevel-1))
set.seed(55)
lennonnoise <- lennon+matrix(rnorm(nlennon^2, 0, sdimage), nlennon, nlennon)

# Level-dependent Cross-validation Thresholding
lennonwd <- imwd(lennonnoise)
#lennoncv <- cvwavelet.image(images=lennonnoise, imagewd=lennonwd,
#      cv.optlevel=optlevel, cv.bsize=c(1,1), cv.kfold=10)$imagecv
#image(lennoncv, axes=FALSE, col=gray(100:0/100), 
#   main="Level-dependent CV")

Run the code above in your browser using DataLab