This function performs level-dependent cross-validation wavelet shrinkage for two-dimensional data given the cross-validation scheme and imputation values.
cvwavelet.image.after.impute(images, imagewd, imageimpute,
cv.index1=cv.index1, cv.index2=cv.index2,
cv.optlevel=cv.optlevel, cv.tol=cv.tol, cv.maxiter=cv.maxiter,
filter.number=2, ll=3)
noisy image
two-dimensional wavelet transform
two-dimensional imputed values according to cross-validation scheme
test dataset row index according to cross-validation scheme
test dataset column index according to cross-validation scheme
thresholding levels
tolerance for cross-validation
maximum iteration for cross-validation
specifies the smoothness of wavelet in the decomposition (argument of WaveThresh)
specifies the lowest level to be thresholded
Reconstruction of images and thresholding values by level-dependent cross-validation
reconstruction of images
thresholding values by level-dependent cross-validation
Calculating thresholding values and reconstructing noisy image given cross-validation scheme and imputation.