The matrix fraction function \(tr(X^T P^{-1} X)\).
MatrixFrac(X, P)# S4 method for MatrixFrac
allow_complex(object)
# S4 method for MatrixFrac
to_numeric(object, values)
# S4 method for MatrixFrac
validate_args(object)
# S4 method for MatrixFrac
dim_from_args(object)
# S4 method for MatrixFrac
sign_from_args(object)
# S4 method for MatrixFrac
is_atom_convex(object)
# S4 method for MatrixFrac
is_atom_concave(object)
# S4 method for MatrixFrac
is_incr(object, idx)
# S4 method for MatrixFrac
is_decr(object, idx)
# S4 method for MatrixFrac
is_quadratic(object)
# S4 method for MatrixFrac
is_qpwa(object)
# S4 method for MatrixFrac
.domain(object)
# S4 method for MatrixFrac
.grad(object, values)
An Expression or numeric matrix.
An Expression or numeric matrix.
A MatrixFrac object.
A list of numeric values for the arguments
An index into the atom.
allow_complex(MatrixFrac): Does the atom handle complex numbers?
to_numeric(MatrixFrac): The trace of \(X^TP^{-1}X\).
validate_args(MatrixFrac): Check that the dimensions of x and P match.
dim_from_args(MatrixFrac): The atom is a scalar.
sign_from_args(MatrixFrac): The atom is positive.
is_atom_convex(MatrixFrac): The atom is convex.
is_atom_concave(MatrixFrac): The atom is not concave.
is_incr(MatrixFrac): The atom is not monotonic in any argument.
is_decr(MatrixFrac): The atom is not monotonic in any argument.
is_quadratic(MatrixFrac): True if x is affine and P is constant.
is_qpwa(MatrixFrac): True if x is piecewise linear and P is constant.
.domain(MatrixFrac): Returns constraints describing the domain of the node
.grad(MatrixFrac): Gives the (sub/super)gradient of the atom w.r.t. each variable
XAn Expression or numeric matrix.
PAn Expression or numeric matrix.