The matrix fraction function \(tr(X^T P^{-1} X)\).
MatrixFrac(X, P)# S4 method for MatrixFrac
allow_complex(object)
# S4 method for MatrixFrac
to_numeric(object, values)
# S4 method for MatrixFrac
validate_args(object)
# S4 method for MatrixFrac
dim_from_args(object)
# S4 method for MatrixFrac
sign_from_args(object)
# S4 method for MatrixFrac
is_atom_convex(object)
# S4 method for MatrixFrac
is_atom_concave(object)
# S4 method for MatrixFrac
is_incr(object, idx)
# S4 method for MatrixFrac
is_decr(object, idx)
# S4 method for MatrixFrac
is_quadratic(object)
# S4 method for MatrixFrac
is_qpwa(object)
# S4 method for MatrixFrac
.domain(object)
# S4 method for MatrixFrac
.grad(object, values)
A list of numeric values for the arguments
An index into the atom.
allow_complex
: Does the atom handle complex numbers?
to_numeric
: The trace of \(X^TP^{-1}X\).
validate_args
: Check that the dimensions of x
and P
match.
dim_from_args
: The atom is a scalar.
sign_from_args
: The atom is positive.
is_atom_convex
: The atom is convex.
is_atom_concave
: The atom is not concave.
is_incr
: The atom is not monotonic in any argument.
is_decr
: The atom is not monotonic in any argument.
is_quadratic
: True if x is affine and P is constant.
is_qpwa
: True if x is piecewise linear and P is constant.
.domain
: Returns constraints describing the domain of the node
.grad
: Gives the (sub/super)gradient of the atom w.r.t. each variable