Predict conditional distribution parameters from a fitted CDEN model.
The returned value is a matrix with columns corresponding to the parameters
of the probability distribution specified in the distribution
argument passed to cadence.fit
.
cadence.predict(x, fit)
matrix with number of rows equal to the number of samples and number of columns equal to the number of predictor variables.
list returned by cadence.fit
.
a matrix with number of rows equal to that of x
and columns
corresponding to the parameters of the distribution
argument passed to cadence.fit
.
# NOT RUN {
data(FraserSediment)
lnorm.distribution.fixed <- list(density.fcn = dlnorm,
parameters = c("meanlog", "sdlog"),
parameters.fixed = "sdlog",
output.fcns = c(identity, exp))
fit <- cadence.fit(x = FraserSediment$x.1970.1976,
y = FraserSediment$y.1970.1976,
hidden.fcn = identity, maxit.Nelder = 100,
trace.Nelder = 1, trace = 1,
distribution = lnorm.distribution.fixed)
pred <- cadence.predict(x = FraserSediment$x.1977.1979, fit = fit)
matplot(pred, type = "l")
# }
Run the code above in your browser using DataLab