cma.fdr(cma.alter, cma.cov, cma.samp, scores = c("CaMP", "logLRT"), passenger.rates = t(data.frame(.55*rep(1.0e-6,25))), allgenes=TRUE, estimate.p0=FALSE, p0.step=1, p0=1, eliminate.noval=FALSE, filter.threshold=0, filter.above=0, filter.below=0, filter.mutations=0, aa=1e-10, bb=1e-10, priorH0=1-500/13020, prior.a0=100, prior.a1=5, prior.fold=10, M=2, DiscOnly=FALSE, PrevSamp="Sjoeblom06", KnownCANGenes=NULL, showFigure=FALSE, cutoffFdr=0.1)GeneAlterBreast for an example.GeneCovBreast for an example.GeneSampBreast for an example.CaMP (Cancer Mutation Prevalence score),
logLRT (log Likelihood Ratio Test score),
neglogPg, logLRT, logitBinomialPosteriorDriver,
PoissonlogBF, PoissonPosterior,
Poissonlmlik0, Poissonlmlik1allgenes=TRUE estimate.p0=FALSETRUE, the genes which are not validated are
eliminated from the analysis. Validated genes are those where at
least one mutation was found in both the Discovery and Prevalence
(or Validation) screens.threshold.size.threshold.size.filter.mutations.prior.fold in each type.scores, showing the right tail of the density of scores
under the null, the right tail of the density of real scores
as a rug (1-d) plot and the number of real genes and average number
of null genes to the right of the cutoff chosen based on
cutoffFdr.showFigure is set to TRUE, it gives the
value at which we are interested in controlling the false discovery
rate (Fdr). The corresponding score threshold is plotted on the figure,
with the number of real genes greater than it and the average
number of null genes greater than it specified. The estimated Fdr
at that threshold is the ratio of the average number of null
genes and the number of real genes, multiplied by p0, which
is often taken to be 1.TRUESjoeblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber T, Mandelker D, Leary R, Ptak J, Silliman N, et al. The consensus coding sequences of breast and colorectal cancers. Science. DOI: 10.1126/science.1133427
Wood LD, Parsons DW, Jones S, Lin J, Sjoeblom, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, et al. The Genomic Landscapes of Human Breast and Colorectal Cancer. Science. DOI: 10.1126/science.1145720
Parsons DW, Jones S, Zhang X, Lin JCH, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu I, et al. An Integrated Genomic Analysis of Human Glioblastoma Multiforme. Science. DOI: 10.1126/science.1164382 Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. DOI: 10.1126/science.1164368 Parsons DW, Li M, Zhang X, Jones S, Leary RJ, Lin J, Boca SM, Carter H, Samayoa J, Bettegowda C, et al. The genetic landscape of the childhood cancer medulloblastoma. Science. DOI: 10.1126/science.1198056
GeneCov, GeneSamp, GeneAlter,
BackRates,cma.scoresdata(ParsonsMB11)
set.seed(188310)
cma.fdr.out <- cma.fdr(cma.alter = GeneAlterMB,
cma.cov = GeneCovMB,
cma.samp = GeneSampMB,
allgenes = TRUE,
estimate.p0=FALSE,
eliminate.noval=FALSE,
filter.mutations=0,
M = 2)
names(cma.fdr.out)
Run the code above in your browser using DataLab