Learn R Programming

CatPredi (version 1.4)

Optimal Categorisation of Continuous Variables in Prediction Models

Description

Allows the user to categorise a continuous predictor variable in a logistic or a Cox proportional hazards regression setting, by maximising the discriminative ability of the model. I Barrio, I Arostegui, MX Rodriguez-Alvarez, JM Quintana (2015) . I Barrio, MX Rodriguez-Alvarez, L Meira-Machado, C Esteban, I Arostegui (2017) .

Copy Link

Version

Install

install.packages('CatPredi')

Monthly Downloads

61

Version

1.4

License

GPL

Maintainer

Irantzu Barrio

Last Published

October 30th, 2025

Functions in CatPredi (1.4)

CatPredi-package

Categorisation of Continuous Predictor Variables in Regression Models.
catpredi

Function to obtain optimal cut points to categorise a continuous predictor variable in a logistic regression model
compare.AUC.ht

A bootstrap-based hypothesis test to select the best number of categories for a continuous predictor variable in a logistic regression model
summary.catpredi

Summary method for catpredi objects
comp.cutpoints.survival

Selection of optimal number of cut points
summary.catpredi.survival

Summary method for objects of class "catpredi.survival"
plot.catpredi

Plot the optimal cut points.
controlcatpredi

Control function
catpredi.survival

Function to obtain optimal cut points to categorise a continuous predictor variable in a Cox proportional hazards regression model
controlcatpredi.survival

Control function
comp.cutpoints

Selection of optimal number of cut points
plot.catpredi.survival

Plot the optimal cut points.