Learn R Programming

CausalMetaR

The CausalMetaR package provides robust and efficient methods for estimating causal effects in a target population using a multi-source dataset. The multi-source data can be a collection of trials, observational studies, or a combination of both, which have the same data structure (outcome, treatment, and covariates). The target population can be based on an internal dataset or an external dataset where only covariate information is available. The causal estimands available are average treatment effects and subgroup treatment effects.

Installation

You can install the development version of CausalMetaR from GitHub with:

# install.packages("devtools")
devtools::install_github("ly129/CausalMetaR")

Copy Link

Version

Install

install.packages('CausalMetaR')

Monthly Downloads

549

Version

0.1.2

License

GPL (>= 3)

Issues

Pull Requests

Stars

Forks

Maintainer

Sean McGrath

Last Published

June 4th, 2024

Functions in CausalMetaR (0.1.2)

plot.STE_internal

Plot method for objects of class "STE_internal"
plot.ATE_internal

Plot method for objects of class "ATE_internal"
dat_multisource

Multi-source dataset
STE_external

Estimating the Subgroup Treatment Effect (STE) in an external target population using multi-source data
STE_internal

Estimating the Subgroup Treatment Effect (STE) in an internal target population using multi-source data
print.STE_internal

Print method for objects of class "ATE_internal", "ATE_external", "STE_internal", or "STE_external"
summary.STE_internal

Summary method for objects of class "ATE_internal", "ATE_external", "STE_internal", or "STE_external"
ATE_external

Estimating the Average Treatment Effect (ATE) in an external target population using multi-source data
ATE_internal

Estimating the Average Treatment Effect (ATE) in an internal target population using multi-source data
dat_external

External dataset