# Example data sets
# Run off triangle of accumulated claims data. A data frame with 10 underwriting years and 10
# development years.
# Source:Historical Loss Development, Reinsurance Association of America (RAA), 1991, p.96
# See Also: Which Stochastic Model is Underlying the Chain Ladder Method?, Thomas Mack, 1994,
# Insurance Mathematics and Economics, 15, 2/3, 133-138
#
# P.D.England and R.J.Verrall, Stochastic Claims Reserving in General Insurance,
# British Actuarial Journal, Vol. 8, pp443-544, 2002
RAA <- t(matrix(c(
5012, 8269, 10907, 11805, 13539, 16181, 18009, 18608, 18662, 18834,
106, 4285, 5396, 10666, 13782, 15599, 15496, 16169, 16704, NA,
3410, 8992, 13873, 16141, 18735, 22214, 22863, 23466, NA, NA,
5655, 11555, 15766, 21266, 23425, 26083, 27067, NA, NA, NA,
1092, 9565, 15836, 22169, 25955, 26180, NA, NA, NA, NA,
1513, 6445, 11702, 12935, 15852, NA, NA, NA, NA, NA,
557, 4020, 10946, 12314, NA, NA, NA, NA, NA, NA,
1351, 6947, 13112, NA, NA, NA, NA, NA, NA, NA,
3133, 5395, NA, NA, NA, NA, NA, NA, NA, NA,
2063, NA, NA, NA, NA, NA, NA, NA, NA, NA
), ncol=10))
MCL=MackChainLadder(RAA)
MCL
plot(MCL)
# Munich Chain Ladder
Paid <- t(matrix(c(
576, 1804, 1970, 2024, 2074, 2102, 2131,
866, 1948, 2162, 2232, 2284, 2348, NA,
1412, 3758, 4252, 4416, 4494, NA, NA,
2286, 5292, 5724, 5850, NA, NA, NA,
1868, 3778, 4648, NA, NA, NA, NA,
1442, 4010, NA, NA, NA, NA, NA,
2044, NA, NA, NA, NA, NA, NA
), ncol=7))
Incurred <- t(matrix(c(
978, 2104, 2134, 2144, 2174, 2182, 2174,
1844, 2552, 2466, 2480, 2508, 2454, NA,
2904, 4354, 4698, 4600, 4644, NA, NA,
3502, 5958, 6070, 6142, NA, NA, NA,
2812, 4882, 4852, NA, NA, NA, NA,
2642, 4406, NA, NA, NA, NA, NA,
5022, NA, NA, NA, NA, NA, NA
), ncol=7))
MCL = MunichChainLadder(Paid, Incurred)
MCL
plot(MCL)
Run the code above in your browser using DataLab