# These are a little slow for CRAN checking
## Not run:
# data(metMUD2)
# # Using clusterCrit
# res1 <- hcaSpectra(metMUD2) # default clustering and distance methods
# res2 <- hcaSpectra(metMUD2, d.method = "cosine")
# # The return value from hcaSpectra is a list with hclust as the first element.
# crit1 <- evalClusters(metMUD2, pkg = "clusterCrit", hclst = res1[[1]], k = 2)
# crit2 <- evalClusters(metMUD2, pkg = "clusterCrit", hclst = res2[[1]], k = 2)
# # crit1 and crit2 can now be compared.
# #
# # Using NbClust
# res3 <- evalClusters(metMUD2, min.nc = 2, max.nc = 5, method = "average", index = "kl")
# ## End(Not run)
Run the code above in your browser using DataLab