dWishart: Density for Random Wishart Distributed Matrices
Description
Compute the density of an observation of a random Wishart distributed matrix
(dWishart) or an observation
from the inverse Wishart distribution (dInvWishart).
Usage
dWishart(x, df, Sigma, log = TRUE)
dInvWishart(x, df, Sigma, log = TRUE)
Value
Density or log of density
Arguments
x
positive definite \(p \times p\) observations for density
estimation - either one matrix or a 3-D array.
df
numeric parameter, "degrees of freedom".
Sigma
positive definite \(p \times p\) "scale" matrix,
the matrix parameter of the distribution.
log
logical, whether to return value on the log scale.
Functions
dInvWishart(): density for the inverse Wishart distribution.
Details
Note there are different ways of parameterizing the Inverse
Wishart distribution, so check which one you need.
Here, If \(X \sim IW_p(\Sigma, \nu)\) then
\(X^{-1} \sim W_p(\Sigma^{-1}, \nu)\).
Dawid (1981) has a different definition: if
\(X \sim W_p(\Sigma^{-1}, \nu)\) and
\(\nu > p - 1\), then
\(X^{-1} = Y \sim IW(\Sigma, \delta)\),
where
\(\delta = \nu - p + 1\).
References
Dawid, A. (1981). Some Matrix-Variate Distribution Theory:
Notational Considerations and a Bayesian Application.
Biometrika, 68(1), 265-274. tools:::Rd_expr_doi("10.2307/2335827")
Gupta, A. K. and D. K. Nagar (1999). Matrix variate distributions.
Chapman and Hall.
Mardia, K. V., J. T. Kent, and J. M. Bibby (1979)
Multivariate Analysis,
London: Academic Press.