Learn R Programming

CholWishart (version 1.1.4)

rInvCholWishart: Cholesky Factor of Random Inverse Wishart Distributed Matrices

Description

Generate n random matrices, distributed according to the Cholesky factor of an inverse Wishart distribution with parameters Sigma and df, \(W_p(Sigma, df)\).

Note there are different ways of parameterizing the Inverse Wishart distribution, so check which one you need. Here, if \(X \sim IW_p(\Sigma, \nu)\) then \(X^{-1} \sim W_p(\Sigma^{-1}, \nu)\). Dawid (1981) has a different definition: if \(X \sim W_p(\Sigma^{-1}, \nu)\) and \(\nu > p - 1\), then \(X^{-1} = Y \sim IW(\Sigma, \delta)\), where \(\delta = \nu - p + 1\).

Usage

rInvCholWishart(n, df, Sigma)

Value

a numeric array, say R, of dimension \(p \times p \times n\), where each R[,,i] is a Cholesky decomposition of a realization of the Wishart distribution \(W_p(Sigma, df)\). Based on a modification of the existing code for the rWishart function

Arguments

n

integer sample size.

df

numeric parameter, "degrees of freedom".

Sigma

positive definite \(p \times p\) "scale" matrix, the matrix parameter of the distribution.

References

Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis (3rd ed.). Hoboken, N. J.: Wiley Interscience.

Dawid, A. (1981). Some Matrix-Variate Distribution Theory: Notational Considerations and a Bayesian Application. Biometrika, 68(1), 265-274. tools:::Rd_expr_doi("10.2307/2335827")

Gupta, A. K. and D. K. Nagar (1999). Matrix variate distributions. Chapman and Hall.

Mardia, K. V., J. T. Kent, and J. M. Bibby (1979) Multivariate Analysis, London: Academic Press.

See Also

rWishart and rCholWishart

Examples

Run this code
# How it is parameterized:
set.seed(20180211)
A <- rCholWishart(1L, 10, 3 * diag(5L))[, , 1]
A
set.seed(20180211)
B <- rInvCholWishart(1L, 10, 1 / 3 * diag(5L))[, , 1]
B
crossprod(A) %*% crossprod(B)

set.seed(20180211)
C <- chol(stats::rWishart(1L, 10, 3 * diag(5L))[, , 1])
C

Run the code above in your browser using DataLab