Learn R Programming

CircNNTSR (version 2.0)

mnntsmanifoldnewtonestimation: Parameter estimation for MNNTS distributions

Description

Computes the maximum likelihood estimates of the MNNTS parameters, through a Newton algorithm on the hypersphere

Usage

mnntsmanifoldnewtonestimation(data, M = 0, R = 1, iter = 1000,
initialpoint = FALSE, cinitial)

Arguments

data
a matrix of angles in radians, a column for each dimension, a row for each data point
M
vector of length R with number of components in the MNNTS for each dimension
R
number of dimensions
iter
number of iterations
initialpoint
TRUE if an initial point for the optimization algorithm will be used
cinitial
initial value for cpars (parameters of the model) for the optimization algorithm. vector of complex numbers of dimension prod(M+1). The first element is a real and positive number. First M[1]+1 elements correspond to dimension 1, next M[2]+1 elements c

Value

  • cestimates
  • loglikOptimum loglikelihood value
  • AICValue of Akaike's Information Criterion
  • BICValue of Bayesian Information Criterion
  • gradnormerrorGradient's error after last iteration

References

Fernandez-Duran, J.J. and Gregorio-Dominguez, M.M. (2009) Multivariate Angular Distributions Based on Multiple Nonnegative Trigonometric Sums, Working Paper, Statistics Department, ITAM, DE-C09.1

Examples

Run this code
M<-c(2,3)
R<-length(M)
data(Nest)
data<-Nest
est<-mnntsmanifoldnewtonestimation(data,M,R,1000)
est

Run the code above in your browser using DataLab