mnntsmanifoldnewtonestimation: Parameter estimation for MNNTS distributions
Description
Computes the maximum likelihood estimates of the MNNTS parameters, through a Newton algorithm on the hypersphere
Usage
mnntsmanifoldnewtonestimation(data, M = 0, R = 1, iter = 1000,
initialpoint = FALSE, cinitial)
Arguments
data
a matrix of angles in radians, a column for each dimension, a row for each data point
M
vector of length R with number of components in the MNNTS for each dimension
R
number of dimensions
iter
number of iterations
initialpoint
TRUE if an initial point for the optimization algorithm will be used
cinitial
initial value for cpars (parameters of the model) for the optimization algorithm.
vector of complex numbers of dimension prod(M+1). The first element is a real and positive number.
First M[1]+1 elements correspond to dimension 1, next M[2]+1 elements c
Value
cestimates
loglikOptimum loglikelihood value
AICValue of Akaike's Information Criterion
BICValue of Bayesian Information Criterion
gradnormerrorGradient's error after last iteration
References
Fernandez-Duran, J.J. and Gregorio-Dominguez, M.M. (2009)
Multivariate Angular Distributions Based on Multiple Nonnegative Trigonometric Sums,
Working Paper, Statistics Department, ITAM, DE-C09.1