Computes the maximum likelihood estimates of the MNNTS parameters using a Newton algorithm on the hypersphere
mnntsmanifoldnewtonestimation(data,M=0,R=1,iter=1000,initialpoint=FALSE,cinitial)
Matrix of prod(M+1)*(R+1). The first R columns are the parameter number, and the last column is the c parameter's estimators
Optimum log-likelihood value
Value of Akaike's Information Criterion
Value of Bayesian Information Criterion
Gradient error after the last iteration
Matrix of angles in radians, a column for each dimension, a row for each data point
Vector of length R with number of components in the MNNTS for each dimension
Number of dimensions
Number of iterations for the Newton algorithm
TRUE if an initial point for the optimization algorithm will be used
Initial value for cpars (parameters of the model) for the optimization algorithm. Vector of complex numbers of dimension prod(M+1). The first element is a real and positive number. The first M[1]+1 elements correspond to dimension one, the next M[2]+1 elements correspond to dimension two, and so on. The sum of the SQUARED moduli of the c parameters must be equal to \(\left(\frac{1}{2*pi}\right)^R\).
Juan Jose Fernandez-Duran and Maria Mercedes Gregorio-Dominguez
Fernandez-Duran, J.J. and Gregorio-Dominguez, M.M. (2009) Multivariate Angular Distributions Based on Multiple Nonnegative Trigonometric Sums, Working Paper, Statistics Department, ITAM, DE-C09.1
Fernandez-Duran, J.J., Gregorio-Dominguez, M.M. (2014). Modeling Angles in Proteins and Circular Genomes Using Multivariate Angular Distributions Based on Nonnegative Trigonometric Sums. Statistical Applications in Genetics and Molecular Biology, 13(1), 1-18. doi:10.1515/sagmb-2012-0012
set.seed(200)
M<-c(2,3)
R<-length(M)
data(Nest)
data<-Nest*(pi/180)
est<-mnntsmanifoldnewtonestimation(data,M,R,100)
est
Run the code above in your browser using DataLab