
Computes the maximum likelihood estimates of the NNTS parameters, using a Newton algorithm on the hypersphere
nntsmanifoldnewtonestimation(data, M=0, iter=1000, initialpoint = FALSE, cinitial)
Matrix of (M+1)x2. The first column is the parameter numbers, and the second column is the c parameter's estimators
Optimum log-likelihood value
Value of Akaike's Information Criterion
Value of Bayesian Information Criterion
Gradient error after the last iteration
Vector of angles in radians
Number of components in the NNTS
Number of iterations
TRUE if an initial point for the optimization algorithm will be used
Vector of size M+1. The first element is real and the next M elements are complex (values for $c_0$ and $c_1, ...,c_M$). The sum of the squared moduli of the parameters must be equal to 1/(2*pi)
Juan Jose Fernandez-Duran y Maria Mercedes Gregorio-Dominguez
Fernandez-Duran, J.J., Gregorio-Dominguez, M.M. (2010). Maximum Likelihood Estimation of Nonnegative Trigonometric Sums Models by Using a Newton-like Algorithm on Manifolds, Working Paper, Department of Statistics, ITAM, DE-C10.8
set.seed(200)
a<-c(runif(10,3*pi/2,2*pi-0.00000001),runif(10,pi/2,pi-0.00000001))
#Estimation of the NNTSdensity with 2 components for data and 200 iterations
nntsmanifoldnewtonestimation(a,2,iter=200)
data(Turtles_radians)
#Empirical analysis of data
Turtles_hist<-hist(Turtles_radians,breaks=10,freq=FALSE)
#Estimation of the NNTS density with 3 componentes for data
nntsmanifoldnewtonestimation(Turtles_radians,3,iter=200)
Run the code above in your browser using DataLab