Matrix of M+1 * 2. The first column is the parameter numbers and the second column is the c
parameter's estimators
loglik
Optimum loglikelihood value
AIC
Value of Akaike's Information Criterion
BIC
Value of Bayesian Information Criterion
gradnormerror
Gradient error after the last iteration
Arguments
data
Frequency of data on each interval
cutpoints
Vector with the limits of intervals. The length of cutpoints must be one plus the length of the data
subintervals
Number of intervals
M
Number of components in the NNTS
iter
Number of iterations
initialpoint
TRUE if an initial point for the optimization algorithm will be used
cinitial
Vector of size M+1. The first element is real and the next M elements are complex
(values for $c_0$ and $c_1, ...,c_M$).The sum of the squared moduli of the parameters must be equal
to 1/(2*pi)
Author
Juan Jose Fernandez-Duran y Maria Mercedes Gregorio-Dominguez