Learn R Programming

CircOutlier (version 3.1.3)

Predict: Estimates of Parameters in Circular Regression

Description

This function calculated the maximum-likelihood estimates parameters

Usage

Predict(x, y)

Arguments

x
independent variable on model $y_i=\alpha+\beta x_i+\epsilon_i$ (mod 2$\pi$) (i=1,2,...,n)
y
the response variable on model $y_i=\alpha+\beta x_i+\epsilon_i$(mod 2$\pi$) (i=1,2,...,n)

Value

  • Number a list containing the following values:
  • alpha1estimate of $\alpha$
  • beta1estimate of $\beta$

Details

This function uses of iterative methods for the parameter estimates in circular-circular regression model and The user can default values The desired change.

References

A. H. Abuzaid, A. G. Hussin & I. B. Mohamed (2013) Detecting of outliers in simple circular regression models using the mean circular error statistics

See Also

circular,CircStats

Examples

Run this code
# Generate a data set dependent of circular variables.
library(CircStats)
x <- rvm(n = 50, 0, 2)
y <- rvm(n = 50, pi/4, 5)
Predict(x, y)

Run the code above in your browser using DataLab