
"limmaSelection"(expression, classes, ...) "limmaSelection"(expression, trainParams, predictParams, resubstituteParams, ..., verbose = 3)
matrix
or ExpressionSet
containing
the training data. For a matrix, the rows are features, and the columns
are samples.TrainParams
describing the
classifier to use for training.PredictParams
describing how
prediction is to be done.ResubstituteParams
describing the performance measure to consider and the numbers of
top features to try for resubstitution classification.matrix
method, variables passed to the ExpressionSet
method. For the ExpressionSet
method, extra parameters that are
passed to TrainParams
if(require(sparsediscrim))
{
# Samples in one class with differential expression to other class.
genesMatrix <- sapply(1:25, function(geneColumn) c(rnorm(100, 9, 1)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(geneColumn)
c(rnorm(75, 9, 1), rnorm(25, 14, 1))))
classes <- factor(rep(c("Poor", "Good"), each = 25))
limmaSelection(genesMatrix, classes,
trainParams = TrainParams(), predictParams = PredictParams(),
resubstituteParams = ResubstituteParams(nFeatures = seq(10, 100, 10), performanceType = "balanced", better = "lower"))
}
Run the code above in your browser using DataLab