# S3 method for cp.torus.kde
plot(x, level.id = 1, ...)
Arguments
data
n x d matrix of toroidal data on \([0, 2\pi)^d\)
eval.point
N x N numeric matrix on \([0, 2\pi)^d\). Default input is
NULL, which represents the fine grid points on \([0, 2\pi)^d\).
level
either a scalar or a vector, or even NULL. Default value
is 0.1.
concentration
positive number which has the role of \(\kappa\) of
von Mises distribution. Default value is 25.
x
cp.torus.kde object
level.id
an integer among 1:length(cp.torus$level).
...
additional parameter for ggplot2::ggplot()
Value
If level is NULL, then return kde at eval.point
and at data points.
If level is a vector, return the above and prediction set indices
for each value of level.
References
Jung, S., Park, K., & Kim, B. (2021). Clustering on the torus by conformal prediction. The Annals of Applied Statistics, 15(4), 1583-1603.
Di Marzio, M., Panzera, A., & Taylor, C. C. (2011). Kernel density estimation on the torus. Journal of Statistical Planning and Inference, 141(6), 2156-2173.