EmOptions: Display the current Expectation and Maximization options.
Description
Display the Expectation and Maximization algorithm current options.
Usage
EmOptions()
Arguments
Value
A list of EM options :
epsi :
{The upper bound of the relative increasing on log-likelihood.}
nberSmallEM :The number of random parameter points from which to run small EMs. The estimated parameter point associated to the higher maximum log-likelihood is then used to initialise the final EM run.
nberIterations :The number of iterations in each small EM.
typeSmallEM :0 = classic EM, 1 = SEM and 2 = CEM.
typeEM :0 = classic EM, 1 = SEM and 2 = CEM.
nberMaxIterations :The maximum number of iterations in the final EM if the convergence is slow.
putThreshold :The indication of whether all parameter estimates are positive.
References
http://projecteuclid.org/euclid.ejs/1379596773{Dominique Bontemps and Wilson Toussile (2013)} : Clustering and variable selection for categorical multivariate data. Electronic Journal of Statistics, Volume 7, 2344-2371, ISSN.
http://link.springer.com/article/10.1007%2Fs11634-009-0043-x{Wilson Toussile and Elisabeth Gassiat (2009)} : Variable selection in model-based clustering using multilocus genotype data. Adv Data Anal Classif, Vol 3, number 2, 109-134.