if (FALSE) {
# generate data from a 4-variate Gumbel copula with different margins
set.seed(11)
n.marg <- 4
theta <- 5
copula <- frankCopula(theta, dim = n.marg)
mymvdc <- mvdc(copula, c("norm", "gamma", "beta","gamma"), list(list(mean=7, sd=2),
list(shape=3, rate=2), list(shape1=4, shape2=1), list(shape=4, rate=3)))
n <- 20
x.samp <- rMvdc(n, mymvdc)
# randomly introduce univariate and multivariate missing
perc.mis <- 0.3
set.seed(11)
miss.row <- sample(1:n, perc.mis*n, replace=TRUE)
miss.col <- sample(1:n.marg, perc.mis*n, replace=TRUE)
miss <- cbind(miss.row,miss.col)
x.samp.miss <- replace(x.samp,miss,NA)
# impute missing values
imp <- CoImp(x.samp.miss, n.marg=n.marg, smoothing=rep(0.6,n.marg), plot=TRUE,
type.data="continuous");
imp
# apply PerfMeasure to the imputed data set
pm <- PerfMeasure(db.complete=x.samp, db.missing=x.samp.miss,
db.imputed=imp@"Imputed.data.matrix", n.marg=4)
pm
str(pm)
}
Run the code above in your browser using DataLab