Learn R Programming

CohortCharacteristics (version 1.1.1)

plotCohortCount: Plot the result of summariseCohortCount.

Description

[Experimental]

Usage

plotCohortCount(
  result,
  x = NULL,
  facet = c("cdm_name"),
  colour = NULL,
  style = NULL
)

Value

A ggplot.

Arguments

result

A summarised_result object.

x

Variables to use in x axis.

facet

Columns to facet by. See options with availablePlotColumns(result). Formula is also allowed to specify rows and columns.

colour

Columns to color by. See options with availablePlotColumns(result).

style

Visual theme to apply. Character, or NULL. If a character, this may be either the name of a built-in style (see plotStyle()), or a path to a .yml file that defines a custom style. If NULL, the function will use the explicit default style, unless a global style option is set (see setGlobalPlotOptions()), or a _brand.yml file is present (in that order). Refer to the package vignette on styles to learn more.

Examples

Run this code
# \donttest{
library(CohortCharacteristics)
library(PatientProfiles)
library(dplyr, warn.conflicts = FALSE)

cdm <- mockCohortCharacteristics(numberIndividuals = 100)

counts <- cdm$cohort2 |>
  addSex() |>
  addAge(ageGroup = list(c(0, 29), c(30, 59), c(60, Inf))) |>
  summariseCohortCount(strata = list("age_group", "sex", c("age_group", "sex"))) |>
  filter(variable_name == "Number subjects")

counts |>
  plotCohortCount(
    x = "sex",
    facet = cohort_name ~ age_group,
    colour = "sex"
  )

# }

Run the code above in your browser using DataLab