RunCoxRegression
uses user provided data, vectors specifying the model,
and options to calculate relative risk for every row in the provided data
Cox_Relative_Risk(
df,
time1 = "%trunc%",
time2 = "%trunc%",
event0 = "event",
names = c("CONST"),
term_n = c(0),
tform = "loglin",
keep_constant = c(0),
a_n = c(0),
modelform = "M",
control = list(),
model_control = list()
)
returns a list of the final results
a data.table containing the columns of interest
column used for time period starts
column used for time period end
column used for event status
columns for elements of the model, used to identify data columns
term numbers for each element of the model
list of string function identifiers, used for linear/step
binary values to denote which parameters to change
list of initial parameter values, used to determine the number of parameters. May be either a list of vectors or a single vector.
string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-E
list of parameters controlling the convergence, see Def_Control() for options or vignette("Control_Options")
controls which alternative model options are used, see Def_model_control() for options and vignette("Control_Options") for further details
Other Plotting Wrapper Functions:
RunCoxPlots()
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(
"UserID" = c(112, 114, 213, 214, 115, 116, 117),
"Starting_Age" = c(18, 20, 18, 19, 21, 20, 18),
"Ending_Age" = c(30, 45, 57, 47, 36, 60, 55),
"Cancer_Status" = c(0, 0, 1, 0, 1, 0, 0),
"a" = c(0, 1, 1, 0, 1, 0, 1),
"b" = c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
"c" = c(10, 11, 10, 11, 12, 9, 11),
"d" = c(0, 0, 0, 1, 1, 1, 1)
)
# For the interval case
time1 <- "Starting_Age"
time2 <- "Ending_Age"
event <- "Cancer_Status"
names <- c("a", "b", "c", "d")
term_n <- c(0, 1, 1, 2)
tform <- c("loglin", "lin", "lin", "plin")
modelform <- "M"
a_n <- c(1.1, 0.1, 0.2, 0.5) # used to test at a specific point
keep_constant <- c(0, 0, 0, 0)
control <- list(
"ncores" = 2, "lr" = 0.75, "maxiter" = 5, "halfmax" = 5,
"epsilon" = 1e-3,
"deriv_epsilon" = 1e-3, "abs_max" = 1.0,
"dose_abs_max" = 100.0, "verbose" = FALSE, "ties" = "breslow",
"double_step" = 1
)
e <- Cox_Relative_Risk(
df, time1, time2, event, names, term_n, tform,
keep_constant, a_n, modelform, control
)
Run the code above in your browser using DataLab