Last chance! 50% off unlimited learning
Sale ends in
RunCoxRegression_Omnibus_Multidose
uses user provided data, time/event columns,
vectors specifying the model, and options to control the convergence
and starting positions. Used for 2DMC column uncertainty methods.
Returns optimized parameters, log-likelihood, and standard deviation for each realization.
Has additional options for using stratification,
multiplicative loglinear 1-term,
competing risks, and calculation without derivatives
RunCoxRegression_Omnibus_Multidose(
df,
time1 = "%trunc%",
time2 = "%trunc%",
event0 = "event",
names = c("CONST"),
term_n = c(0),
tform = "loglin",
keep_constant = c(0),
a_n = c(0),
modelform = "M",
realization_columns = matrix(c("temp00", "temp01", "temp10", "temp11"), nrow = 2),
realization_index = c("temp0", "temp1"),
control = list(),
strat_col = "null",
cens_weight = "null",
model_control = list(),
cons_mat = as.matrix(c(0)),
cons_vec = c(0)
)
returns a list of the final results for each realization
a data.table containing the columns of interest
column used for time period starts
column used for time period end
column used for event status
columns for elements of the model, used to identify data columns
term numbers for each element of the model
list of string function identifiers, used for linear/step
binary values to denote which parameters to change
list of initial parameter values, used to determine the number of parameters. May be either a list of vectors or a single vector.
string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-E
used for multi-realization regressions. Matrix of column names with rows for each column with realizations, columns for each realization
used for multi-realization regressions. Vector of column names, one for each column with realizations. Each name should be used in the "names" variable in the equation definition
list of parameters controlling the convergence, see Def_Control() for options or vignette("Control_Options")
column to stratify by if needed
column containing the row weights
controls which alternative model options are used, see Def_model_control() for options and vignette("Control_Options") for further details
Matrix containing coefficients for a system of linear constraints, formatted as matrix
Vector containing constants for a system of linear constraints, formatted as vector
Other Cox Wrapper Functions:
CoxCurveSolver()
,
RunCaseControlRegression_Omnibus()
,
RunCoxNull()
,
RunCoxRegression()
,
RunCoxRegression_Basic()
,
RunCoxRegression_CR()
,
RunCoxRegression_Guesses_CPP()
,
RunCoxRegression_Omnibus()
,
RunCoxRegression_Single()
,
RunCoxRegression_Strata()
,
RunCoxRegression_Tier_Guesses()
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table(
"UserID" = c(112, 114, 213, 214, 115, 116, 117),
"t0" = c(18, 20, 18, 19, 21, 20, 18),
"t1" = c(30, 45, 57, 47, 36, 60, 55),
"lung" = c(0, 0, 1, 0, 1, 0, 0),
"dose" = c(0, 1, 1, 0, 1, 0, 1)
)
set.seed(3742)
df$rand <- floor(runif(nrow(df), min = 0, max = 5))
df$rand0 <- floor(runif(nrow(df), min = 0, max = 5))
df$rand1 <- floor(runif(nrow(df), min = 0, max = 5))
df$rand2 <- floor(runif(nrow(df), min = 0, max = 5))
time1 <- "t0"
time2 <- "t1"
names <- c("dose", "rand")
term_n <- c(0, 0)
tform <- c("loglin", "loglin")
realization_columns <- matrix(c("rand0", "rand1", "rand2"), nrow = 1)
realization_index <- c("rand")
keep_constant <- c(1, 0)
a_n <- c(0, 0)
modelform <- "M"
cens_weight <- c(0)
event <- "lung"
a_n <- c(-0.1, -0.1)
keep_constant <- c(0, 0)
control <- list(
"ncores" = 2, "lr" = 0.75, "maxiter" = 1,
"halfmax" = 2, "epsilon" = 1e-6,
"deriv_epsilon" = 1e-6, "abs_max" = 1.0,
"dose_abs_max" = 100.0,
"verbose" = 0, "ties" = "breslow", "double_step" = 1
)
e <- RunCoxRegression_Omnibus_Multidose(df, time1, time2, event,
names,
term_n = term_n, tform = tform,
keep_constant = keep_constant, a_n = a_n,
modelform = modelform,
realization_columns = realization_columns,
realization_index = realization_index,
control = control, strat_col = "fac",
model_control = list(), cens_weight = "null"
)
Run the code above in your browser using DataLab