ComRiskModel (version 0.2.0)
Fitting of Complementary Risk Models
Description
Evaluates the probability density function (PDF), cumulative distribution function (CDF), quantile function (QF), random numbers and maximum likelihood estimates (MLEs) of well-known complementary binomial-G, complementary negative binomial-G and complementary geometric-G families of distributions taking baseline models such as exponential, extended exponential, Weibull, extended Weibull, Fisk, Lomax, Burr-XII and Burr-X. The functions also allow computing the goodness-of-fit measures namely the Akaike-information-criterion (AIC), the Bayesian-information-criterion (BIC), the minimum value of the negative log-likelihood (-2L) function, Anderson-Darling (A) test, Cramer-Von-Mises (W) test, Kolmogorov-Smirnov test, P-value and convergence status. Moreover, some commonly used data sets from the fields of actuarial, reliability, and medical science are also provided. Related works include:
a) Tahir, M. H., & Cordeiro, G. M. (2016). Compounding of distributions: a survey and new generalized classes. Journal of Statistical Distributions and Applications, 3, 1-35.
.