Learn R Programming

Compositional (version 1.1)

diri.reg: Dirichlet regression

Description

Dirichlet regression

Usage

diri.reg(y, x, plot = TRUE, xnew = NULL)

Arguments

y
A matrix with the compositional data (dependent variable). Zero values are not allowed.
x
The predictor variable(s), they have to be continuous.
plot
A boolean variable specifying whether to plot the leverage values of the observations or not. This is taken into account only when xnew = NULL.
xnew
If you have new data use it, otherwise leave it NULL.

Value

  • A list including:
  • loglikThe value of the log-likelihood.
  • phiThe precision parameter.
  • log.phiThe logarithm of the precision parameter.
  • std.logphiThe standard error of the logarithm of the precision parameter.
  • betaThe beta coefficients.
  • sebThe standard error of the beta coefficients.
  • levThe leverage values.
  • estThe fitted or the predicted values (if xnew is not NULL).

Details

A Dirichlet distribution is assumed for the regression. This involves numerical optimisation.

References

Maier, Marco J. (2014) DirichletReg: Dirichlet Regression for Compositional Data in R. Research Report Series/Department of Statistics and Mathematics, 125. WU Vienna University of Economics and Business, Vienna. http://epub.wu.ac.at/4077/1/Report125.pdf Gueorguieva, Ralitza, Robert Rosenheck, and Daniel Zelterman (2008). Dirichlet component regression and its applications to psychiatric data. Computational statistics & data analysis 52(12): 5344-5355.

See Also

esov.compreg, kl.compreg, ols.compreg, comp.reg, alfa.reg

Examples

Run this code
x <- iris[, 4]
y <- iris[, 1:3]
mod1 <- diri.reg(y, x)
mod2 <- comp.reg(y, x)
mod1
mod2

Run the code above in your browser using DataLab