Learn R Programming

CompositionalClust (version 1.2)

clust.plot: Visualization of the \(K\)--means algorithm results

Description

Visualization of the \(K\)--means algorithm results.

Usage

clust.plot(mod, x)

Value

A plot.

Arguments

mod

The output of the kmeans() function.

x

A matrix with the data.

Author

Michail Tsagris.

R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

Details

The function performs PCA and plots the data onto the first two dimensions, constructs the convex hull of the groups and plots them with different colours.

References

Tsagris M. and Kontemeniotis N. (2025). Simplicial clustering using the \(\alpha\)--transformation. https://arxiv.org/pdf/2509.05945.

Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf

Garcia-Escudero Luis A., Gordaliza Alfonso, Matran Carlos, Mayo-Iscar Agustin. (2008). A general trimming approach to robust cluster analysis. Annals of Statistics 36(3): 1324--1345.

See Also

cikmeans

Examples

Run this code
y <- as.matrix(iris[, 1:4])
y <- y / rowSums(y)
z <- CompositionalClust::alfa(y, 1)
mod <- alfa.kmeans( z, ncl = 3, a = 1 )
clust.plot(mod[[ 1 ]], z )

Run the code above in your browser using DataLab