Learn R Programming

CompositionalRF (version 1.3)

CompositionalRF-package: Multivariate Random Forests with Compositional Responses

Description

Multivariate random forest with compositional response variables and continuous predictor variables. The data are first transformed using the additive log-ratio transformation and then the multivariate random forest of Rahman R., Otridge J. and Pal R. (2017), <doi:10.1093/bioinformatics/btw765>, is applied.

Arguments

Author

Michail Tsagris mtsagris@uoc.gr.

Maintainers

Michail Tsagris <mtsagris@uoc.gr>

Details

Package:CompositionalRF
Type:Package
Version:1.3
Date:2025-07-10
License:GPL-2

References

Rahman R., Otridge J. and Pal R. (2017). IntegratedMRF: random forest-based framework for integrating prediction from different data types. Bioinformatics, 33(9): 1407--1410.

Segal M. and Xiao Y. (2011). Multivariate random forests. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1): 80--87.

Alenazi A. (2023). A review of compositional data analysis and recent advances. Communications in Statistics--Theory and Methods, 52(16): 5535--5567.

Friedman Jerome, Trevor Hastie and Robert Tibshirani (2009). The elements of statistical learning, 2nd edition. Springer, Berlin.