# We simulate from a conditional copula
set.seed(1)
N = 800
Z = rnorm(n = N, mean = 5, sd = 2)
conditionalTau = -0.9 + 1.8 * pnorm(Z, mean = 5, sd = 2)
simCopula = VineCopula::BiCopSim(N=N , family = 1,
par = VineCopula::BiCopTau2Par(1 , conditionalTau ))
X1 = qnorm(simCopula[,1])
X2 = qnorm(simCopula[,2])
datasetP = datasetPairs(X1 = X1, X2 = X2, Z = Z, h = 0.07, cut = 0.9)
est_Tree = CKT.fit.tree(datasetPairs = datasetP, mindev = 0.008)
print(est_Tree)
newZ = seq(1,10,by = 0.1)
prediction = CKT.predict.tree(fit = est_Tree, newZ = data.frame(x=newZ))
# Comparison between true Kendall's tau (in red)
# and estimated Kendall's tau (in black)
plot(newZ, prediction, type = "l", ylim = c(-1,1))
lines(newZ, -0.9 + 1.8 * pnorm(newZ, mean = 5, sd = 2), col="red")
Run the code above in your browser using DataLab