# We simulate from a conditional copula
set.seed(1)
N = 400
Z = rnorm(n = N, mean = 5, sd = 2)
conditionalTau = -0.9 + 1.8 * pnorm(Z, mean = 5, sd = 2)
simCopula = VineCopula::BiCopSim(N=N , family = 1,
par = VineCopula::BiCopTau2Par(1 , conditionalTau ))
X1 = qnorm(simCopula[,1])
X2 = qnorm(simCopula[,2])
newZ = seq(2, 10, by = 0.1)
estimatedCKT_kendallReg <- CKT.kendallReg.fit(
X1 = X1, X2 = X2, Z = Z,
ZToEstimate = newZ, h_kernel = 0.07)
coef(estimatedCKT_kendallReg$fit,
s = estimatedCKT_kendallReg$lambda)
# Comparison between true Kendall's tau (in black)
# and estimated Kendall's tau (in red)
trueConditionalTau = -0.9 + 1.8 * pnorm(newZ, mean = 5, sd = 2)
plot(newZ, trueConditionalTau , col="black",
type = "l", ylim = c(-1, 1))
lines(newZ, estimatedCKT_kendallReg$estimatedCKT, col = "red")
Run the code above in your browser using DataLab