# We simulate from a conditional copula
set.seed(1)
N = 800
Z = rnorm(n = N, mean = 5, sd = 2)
conditionalTau = -0.9 + 1.8 * pnorm(Z, mean = 5, sd = 2)
simCopula = VineCopula::BiCopSim(N=N , family = 1,
par = VineCopula::BiCopTau2Par(1 , conditionalTau ))
X1 = qnorm(simCopula[,1])
X2 = qnorm(simCopula[,2])
newZ = seq(2,10,by = 0.1)
datasetP = datasetPairs(X1 = X1, X2 = X2, Z = Z, h = 0.07, cut = 0.9)
estimatedCKT_knn <- CKT.predict.kNN(
datasetPairs = datasetP,
newZ = matrix(newZ,ncol = 1),
number_nn = c(50,80, 100, 120,200),
partition = 8)
# Comparison between true Kendall's tau (in black)
# and estimated Kendall's tau (in red)
trueConditionalTau = -0.9 + 1.8 * pnorm(newZ, mean = 5, sd = 2)
plot(newZ, trueConditionalTau , col="black",
type = "l", ylim = c(-1, 1))
lines(newZ, estimatedCKT_knn$estimatedCKT, col = "red")
Run the code above in your browser using DataLab