n = 50 # to get fast computation time. More realistic is n = 800.
Z = stats::runif(n = n)
CKT = 0.2 * as.numeric(Z <= 0.3) +
0.5 * as.numeric(Z > 0.3 & Z <= 0.5) +
+ 0.3 * as.numeric(Z > 0.5)
family = 3
simCopula = VineCopula::BiCopSim(N = n,
par = VineCopula::BiCopTau2Par(CKT, family = family), family = family)
X1 = simCopula[,1]
X2 = simCopula[,2]
partition = cbind(Z <= 0.3, Z > 0.3 & Z <= 0.5, Z > 0.5)
result = bCond.simpA.param(X1 = X1, X2 = X2, testStat = "T2c_tau",
partition = partition, family = family, typeBoot = "boot.paramInd")
print(result$p_val)
n = 800
Z = stats::runif(n = n)
CKT = 0.1
family = 3
simCopula = VineCopula::BiCopSim(N = n,
par = VineCopula::BiCopTau2Par(CKT, family = family), family = family)
X1 = simCopula[,1]
X2 = simCopula[,2]
partition = cbind(Z <= 0.3, Z > 0.3 & Z <= 0.5, Z > 0.5)
result = bCond.simpA.param(X1 = X1, X2 = X2,
partition = partition, family = family, typeBoot = "boot.NP")
print(result$p_val)
Run the code above in your browser using DataLab