# \donttest{
# We simulate from a non-simplified conditional copula
set.seed(1)
N = 300
Z = runif(n = N, min = 0, max = 1)
conditionalTau = -0.9 + 1.8 * Z
simCopula = VineCopula::BiCopSim(N=N , family = 1,
par = VineCopula::BiCopTau2Par(1 , conditionalTau ))
X1 = qnorm(simCopula[,1])
X2 = qnorm(simCopula[,2])
result = simpA.kendallReg(
X1, X2, Z, h_kernel = 0.03,
listPhi = list(z = function(z){return(z)} ) )
print(result)
plot(result)
# Obtain matrix of coefficients, std err, z values and p values
coef(result)
# Obtain variance-covariance matrix of the coefficients
vcov(result)
# Obtain standard errors of the kernel-based estimates of CKT
se(result, type = "kernel-based CKT")
# Obtain standard errors of the regression-based estimates of CKT
se(result, type = "regression-based CKT")
result_morePhi = simpA.kendallReg(
X1, X2, Z, h_kernel = 0.03,
listPhi = list(
z = function(z){return(z)},
cos10z = function(z){return(cos(10 * z))},
sin10z = function(z){return(sin(10 * z))},
`1(z <= 0.4)` = function(z){return(as.numeric(z <= 0.4))},
`1(z <= 0.6)` = function(z){return(as.numeric(z <= 0.6))}) )
print(result_morePhi)
plot(result_morePhi)
# We simulate from a simplified conditional copula
set.seed(1)
N = 300
Z = runif(n = N, min = 0, max = 1)
conditionalTau = -0.3
simCopula = VineCopula::BiCopSim(N=N , family = 1,
par = VineCopula::BiCopTau2Par(1 , conditionalTau ))
X1 = qnorm(simCopula[,1])
X2 = qnorm(simCopula[,2])
result = simpA.kendallReg(
X1, X2, Z, h_kernel = 0.03,
listPhi = list(
z = function(z){return(z)},
cos10z = function(z){return(cos(10 * z))},
sin10z = function(z){return(sin(10 * z))},
`1(z <= 0.4)` = function(z){return(as.numeric(z <= 0.4))},
`1(z <= 0.6)` = function(z){return(as.numeric(z <= 0.6))}) )
print(result)
plot(result)
# }
Run the code above in your browser using DataLab